### sync Map 总结 - sync.map 是线程安全的,读取,插入,删除也都保持着常数级的时间复杂度 - 通过读写分离,降低锁时间来提高效率,适用于读多写少的场景 - Range 操作需要提供一个函数,参数是 k,v,返回值是一个布尔值:f func(key, value interface{}) bool - 调用 Load 或 LoadOrStore 函数时,如果在 read 中没有找到 key,则会将 misses 值原子地增加 1,当 misses 增加到和 dirty 的长度相等时,会将 dirty 提升为 read,来减少读miss - 新写入的 key 会保存到 dirty 中,如果这时 dirty 为 nil,就会先新创建一个 dirty,并将 read 中未被删除的元素拷贝到 dirty。 - 当 dirty 为 nil 的时候,read 就代表 map 所有的数据;当 dirty 不为 nil 的时候,dirty 才代表 map 所有的数据 ### sync.Map结构 ```go type Map struct { mu Mutex // read contains the portion of the map's contents that are safe for // concurrent access (with or without mu held). // read里边存的是并发访问安全的(持不持有锁都是可以的) // // The read field itself is always safe to load, but must only be stored with // mu held. // load read里边内容总是安全的,但是当你想store进去的时候就必须加mutex 锁 // Entries stored in read may be updated concurrently without mu, but updating // a previously-expunged entry requires that the entry be copied to the dirty // map and unexpunged with mu held. // 大致意思是更新已经删除的key需要加锁,然后把key放到dirty里边 read atomic.Value // readOnly // dirty contains the portion of the map's contents that require mu to be // held. To ensure that the dirty map can be promoted to the read map quickly, // it also includes all of the non-expunged entries in the read map. // 为了快速提升dirty为read,dirty中存储了read中未删除的key // // Expunged entries are not stored in the dirty map. An expunged entry in the // clean map must be unexpunged and added to the dirty map before a new value // can be stored to it. // // If the dirty map is nil, the next write to the map will initialize it by // making a shallow copy of the clean map, omitting stale entries. dirty map[interface{}]*entry // misses counts the number of loads since the read map was last updated that // needed to lock mu to determine whether the key was present. // // 从read中读取不到key,miss就会加一,加到一定阈值,dirty将被提升为read // Once enough misses have occurred to cover the cost of copying the dirty // map, the dirty map will be promoted to the read map (in the unamended // state) and the next store to the map will make a new dirty copy. misses int } // readOnly is an immutable struct stored atomically in the Map.read field. // 不可改变,原子性的存在map的read字段里 type readOnly struct { m map[interface{}]*entry amended bool // true if the dirty map contains some key not in m. } // expunged is an arbitrary pointer that marks entries which have been deleted // from the dirty map. // 专用来标记 entry已经从dirty中删除 var expunged = unsafe.Pointer(new(interface{})) // An entry is a slot in the map corresponding to a particular key. // entry存放的就是一个指针,指向value的地址 type entry struct { // p points to the interface{} value stored for the entry. // // If p == nil, the entry has been deleted, and either m.dirty == nil or // m.dirty[key] is e. // 地址为nil,表明key已经被删除,要么map的dirty为空,要么dirty[key]是这个entry // // If p == expunged, the entry has been deleted, m.dirty != nil, and the entry // is missing from m.dirty. // 地址是expunged,就表示这个entry已经被删了,并且dirty也已经 不存这个值了 // // Otherwise, the entry is valid and recorded in m.read.m[key] and, if m.dirty // != nil, in m.dirty[key]. // 其他情况下,就是没有被删除,read[key]为这个p,然后如果dirty不为nil,则ditry[key]也为p // // An entry can be deleted by atomic replacement with nil: when m.dirty is // next created, it will atomically replace nil with expunged and leave // m.dirty[key] unset. // 当删除 key 时,并不实际删除。一个 entry 可以通过原子地(CAS 操作)设置 p 为 nil 被删除。 // 如果之后创建 m.dirty,nil 又会被原子地设置为 expunged,且不会拷贝到 dirty 中。 // // An entry's associated value can be updated by atomic replacement, provided // p != expunged. If p == expunged, an entry's associated value can be updated // only after first setting m.dirty[key] = e so that lookups using the dirty // map find the entry. // 如果 p 不为 expunged,和 entry 相关联的这个 value 可以被原子地更新; //如果 p == expunged,那么仅当它初次被设置到 m.dirty 之后,才可以被更新 p unsafe.Pointer // *interface{} } ``` > 引用知乎回答的一张图 https://zhuanlan.zhihu.com/p/344834329 ![sync_map结构](https://blog-heysq-1255479807.cos.ap-beijing.myqcloud.com/blog/wiki/go/sync_map.jpg) ### Load - 读不到返回nil,和false - 读到返回值和ok - read map中不存在key,但是ditry map中有这个key,加锁防止dirty升级为map - 加锁从 dirty中读取key,然后load函数会判断读取到的值是不是expunged(也就是被删除的情况) - 标记miss,以便后续dirty升级为read - miss的数量大于等于dirty的map的数量时,dirty升级为map ```go func (m *Map) Load(key interface{}) (value interface{}, ok bool) { read, _ := m.read.Load().(readOnly) e, ok := read.m[key] // read map中不存在key,但是ditry map中有这个key,加锁防止dirty升级为map // 加锁从 dirty中读取key,然后load函数会判断读取到的值是不是expunged(也就是被删除的情况) // 标记miss,以便后续dirty升级为read // miss的数量大于等于dirty的map的数量时,dirty升级为map if !ok && read.amended { m.mu.Lock() // Avoid reporting a spurious miss if m.dirty got promoted while we were // blocked on m.mu. (If further loads of the same key will not miss, it's // not worth copying the dirty map for this key.) read, _ = m.read.Load().(readOnly) e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] // Regardless of whether the entry was present, record a miss: this key // will take the slow path until the dirty map is promoted to the read // map. m.missLocked() } m.mu.Unlock() } if !ok { return nil, false } return e.load() } func (e *entry) load() (value interface{}, ok bool) { p := atomic.LoadPointer(&e.p) // key 被删除 if p == nil || p == expunged { return nil, false } return *(*interface{})(p), true } func (m *Map) missLocked() { m.misses++ if m.misses < len(m.dirty) { return } m.read.Store(readOnly{m: m.dirty}) m.dirty = nil m.misses = 0 } ``` ### Store - 存储一个key到sync Map - key存在更新 - 没读到已经存在read中的key要加锁进行存储 #### store 流程 - 如果在 read 里能够找到待存储的 key,并且对应的 entry 的 p 值不为 expunged,也就是没被删除时,直接更新对应的 entry - 第一步没有成功:要么 read 中没有这个 key,要么 key 被标记为删除。则先加锁,再进行后续的操作。 - 再次在 read 中查找是否存在这个 key,也就是 double check 一下 - 如果 read 中存在该 key,但 p == expunged,说明 m.dirty != nil 并且 m.dirty 中不存在该 key 值 此时: a. 将 p 的状态由 expunged 更改为 nil;b. dirty map 插入 key。然后,直接更新对应的 value。 - 如果 read 中没有此 key,那就查看 dirty 中是否有此 key,如果有,则直接更新对应的 value,这时 read 中还是没有此 key - 最后一步,如果 read 和 dirty 中都不存在该 key,则:a. 如果 dirty 为空,则需要创建 dirty,并从 read 中拷贝未被删除的元素;b. 更新 amended 字段,标识 dirty map 中存在 read map 中没有的 key;c. 将 k-v 写入 dirty map 中,read.m 不变。最后,更新此 key 对应的 value ```go // Store sets the value for a key. func (m *Map) Store(key, value interface{}) { // read 中可以读到这个key read, _ := m.read.Load().(readOnly) if e, ok := read.m[key]; ok && e.tryStore(&value) { return } m.mu.Lock() read, _ = m.read.Load().(readOnly) if e, ok := read.m[key]; ok { if e.unexpungeLocked() { // 过去被删除了,就将这个key存到dirty // The entry was previously expunged, which implies that there is a // non-nil dirty map and this entry is not in it. m.dirty[key] = e } // 原子存指针的值 e.storeLocked(&value) //dirty和read都可以读到新存进去的值 } else if e, ok := m.dirty[key]; ok { e.storeLocked(&value) // dirty 中存在,就直接存储值 } else { // 两边都没读到这个key if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked() // 如果dirty为nil,就新建一个dirty,然后把read中没删除的key存到dirty m.read.Store(readOnly{m: read.m, amended: true}) // 标记dirtymap中有read中不存在的key } m.dirty[key] = newEntry(value) // 值存储到dirty,下次load可以取到 } m.mu.Unlock() } // tryStore stores a value if the entry has not been expunged. // // If the entry is expunged, tryStore returns false and leaves the entry // unchanged. // 如果这个key已经被删除了,就返回了 // key 没被删除原子交换entry中p的值 func (e *entry) tryStore(i *interface{}) bool { for { p := atomic.LoadPointer(&e.p) if p == expunged { return false } if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(i)) { return true } } } // 如果没有dirtymap的话新建一个,然后把read中没有删除的存到dirty func (m *Map) dirtyLocked() { if m.dirty != nil { return } read, _ := m.read.Load().(readOnly) m.dirty = make(map[interface{}]*entry, len(read.m)) for k, e := range read.m { if !e.tryExpungeLocked() { m.dirty[k] = e } } } // 不是nil,也不是expunged的,也就是正常值才会被放到dirty中 func (e *entry) tryExpungeLocked() (isExpunged bool) { p := atomic.LoadPointer(&e.p) for p == nil { if atomic.CompareAndSwapPointer(&e.p, nil, expunged) { return true } p = atomic.LoadPointer(&e.p) } return p == expunged } ``` ### LoadAndStore ```go // LoadOrStore returns the existing value for the key if present. // Otherwise, it stores and returns the given value. // The loaded result is true if the value was loaded, false if stored. func (m *Map) LoadOrStore(key, value interface{}) (actual interface{}, loaded bool) { // Avoid locking if it's a clean hit. // 正产查询 read, _ := m.read.Load().(readOnly) if e, ok := read.m[key]; ok { actual, loaded, ok := e.tryLoadOrStore(value) if ok { return actual, loaded } } m.mu.Lock() read, _ = m.read.Load().(readOnly) if e, ok := read.m[key]; ok { if e.unexpungeLocked() { // e 为 nil,tryLoadOrStore 可以继续store,而不是直接return m.dirty[key] = e } actual, loaded, _ = e.tryLoadOrStore(value) } else if e, ok := m.dirty[key]; ok { actual, loaded, _ = e.tryLoadOrStore(value) m.missLocked() } else { if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked() m.read.Store(readOnly{m: read.m, amended: true}) } m.dirty[key] = newEntry(value) actual, loaded = value, false } m.mu.Unlock() return actual, loaded } // tryLoadOrStore atomically loads or stores a value if the entry is not // expunged. // // If the entry is expunged, tryLoadOrStore leaves the entry unchanged and // returns with ok==false. func (e *entry) tryLoadOrStore(i interface{}) (actual interface{}, loaded, ok bool) { p := atomic.LoadPointer(&e.p) if p == expunged { return nil, false, false } if p != nil { return *(*interface{})(p), true, true } // Copy the interface after the first load to make this method more amenable // to escape analysis: if we hit the "load" path or the entry is expunged, we // shouldn't bother heap-allocating. ic := i for { if atomic.CompareAndSwapPointer(&e.p, nil, unsafe.Pointer(&ic)) { return i, false, true } p = atomic.LoadPointer(&e.p) if p == expunged { return nil, false, false } if p != nil { return *(*interface{})(p), true, true } } } ``` ### Delete && LoadAndDelete - 查询数据的逻辑同Load - 主要调用LoadAndDelete 方法 - 返回val,和一个bool ```go // LoadAndDelete deletes the value for a key, returning the previous value if any. // The loaded result reports whether the key was present. func (m *Map) LoadAndDelete(key interface{}) (value interface{}, loaded bool) { read, _ := m.read.Load().(readOnly) e, ok := read.m[key] if !ok && read.amended { m.mu.Lock() read, _ = m.read.Load().(readOnly) e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] delete(m.dirty, key) // Regardless of whether the entry was present, record a miss: this key // will take the slow path until the dirty map is promoted to the read // map. m.missLocked() } m.mu.Unlock() } if ok { return e.delete() } return nil, false } // 直接标记成nil func (e *entry) delete() (value interface{}, ok bool) { for { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged { return nil, false } if atomic.CompareAndSwapPointer(&e.p, p, nil) { return *(*interface{})(p), true } } } ``` ### Range - 函数传参一个`func(key, value interface{}) bool` - 函数返回false,结束循环 - 如果dirty中存在read中没有的key,加锁将dirty升级为read - 然后循环遍历read ```go / Range calls f sequentially for each key and value present in the map. // If f returns false, range stops the iteration. // // Range does not necessarily correspond to any consistent snapshot of the Map's // contents: no key will be visited more than once, but if the value for any key // is stored or deleted concurrently, Range may reflect any mapping for that key // from any point during the Range call. // // Range may be O(N) with the number of elements in the map even if f returns // false after a constant number of calls. func (m *Map) Range(f func(key, value interface{}) bool) { // We need to be able to iterate over all of the keys that were already // present at the start of the call to Range. // If read.amended is false, then read.m satisfies that property without // requiring us to hold m.mu for a long time. read, _ := m.read.Load().(readOnly) if read.amended { // m.dirty contains keys not in read.m. Fortunately, Range is already O(N) // (assuming the caller does not break out early), so a call to Range // amortizes an entire copy of the map: we can promote the dirty copy // immediately! m.mu.Lock() read, _ = m.read.Load().(readOnly) if read.amended { read = readOnly{m: m.dirty} m.read.Store(read) m.dirty = nil m.misses = 0 } m.mu.Unlock() } for k, e := range read.m { v, ok := e.load() if !ok { continue } if !f(k, v) { break } } } ```